A Convenient and Genuine Equivalent to HZrCp₂Cl Generated in Situ from ZrCp₂Cl₂—DIBAL-H

LETTERS 2006 Vol. 8, No. 17 3675–3678

ORGANIC

Zhihong Huang and Ei-ichi Negishi*

Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084

negishi@purdue.edu

Received May 16, 2006

Slow addition of 1 equiv of $^{I}Bu_{2}AIH$ to $ZrCp_{2}CI_{2}$ in THF provides a convenient route to either $HZrCp_{2}CI$ - $^{I}Bu_{2}AICI$ (Reagent I) or $HZrCp_{2}CI$ (Reagents II and III). The latter represents a highly convenient route to genuine $HZrCp_{2}CI$, while Reagent I is useful for regio- and stereoselective conversion of 1- and 2-alkynes into (*E*)-1-iodo-1-alkenes and (*E*)-2-iodo-2-alkenes, respectively.

Despite the well-established significance of HZrCp₂Cl^{1,2} in organic synthesis³ including its hydrozirconation of alkenes^{2a} and alkynes^{1b,2b} as well as reduction of various other organic compounds,^{3,4} its use has been plagued with difficulties in maintaining its purity over an extended period of time at the satisfactory level.^{3d} This has made it desirable to develop procedures for its in situ generation and use. Thus, various methods have been devised, including treatment of considerably more stable and less expensive $ZrCp_2Cl_2$ with many different hydride sources, such as LiAlH₄,^{5,6} NaAlH₂-(OCH₂CH₂OMe)₂,⁵ LiBH(^sBu)₃,^{5,7} and 'BuMgCl,^{5,8} as well

as modifications of some of these original procedures involving LiAlH₄⁶ and 'BuMgCl.⁹ And yet, none of these in situ generation methods appears to be a true equivalent to isolated and pure HZrCp₂Cl. The use of basic metal hydrides, such as LiAlH₄ and NaAlH₂(OCH₂CH₂OMe)₂, is usually complicated by the production of undesirable byproducts that interfere with the desired reactions with HZrCp₂Cl and/or cause technical difficulties, such as very sluggish and tedious filtration for their removal. The initially formed reagent generated by treating ZrCp₂Cl₂ with 'BuMgCl is 'BuZrCp₂Cl, whose hydrogen-transfer hydrozirconation is much slower than that with HZrCp₂Cl.^{5,8} Its acceleration through the use of various catalysts does speed up the desired hydrozirconation, but fails to match the results obtainable with pure HZrCp₂Cl.⁹

^{(1) (}a) Wailes, P. C.; Weigold, H. J. Organomet. Chem. 1970, 24, 405.
(b) Wailes, P. C.; Weigold, H.; Bell, A. P. J. Organomet. Chem. 1971, 27, 373.

^{(2) (}a) Hart, D. W.; Schwartz, J. J. Am. Chem. Soc. **1974**, 96, 8115. (b) Hart, D. W.; Blackburn, T. F.; Schwartz, J. J. Am. Chem. Soc. **1975**, 97, 679.

^{(3) (}a) Schwartz, J.; Labinger, J. A. Angew. Chem., Int. Ed. **1976**, 15, 333. (b) Wipf, P.; Jahn, H. Tetrahedron **1996**, 52, 12853. (c) Negishi, E. In Organometallics in Synthesis: A Mannual, 2nd ed.; Schlosser, M., Ed.; Wiley: New York, 2002; Chapter 8, pp 925–1002. (d) Lipshutz, B. H.; Pfeiffer, S. S.; Noson, K.; Tomioka, T. In Titanium and Zirconium in Organic Synthesis; Marek, I., Ed.; Wiley-VCH: Weinheim, Germany, 2002; Chapter 4, pp 110–148.

⁽⁴⁾ White, J. M.; Tunoori, A. R.; Georg, G. I. J. Am. Chem. Soc. 2000, 122, 11995.

⁽⁵⁾ Negishi, E.; Miller, J. A.; Yoshida, T. Tetrahedron Lett. **1984**, 25, 3407.

⁽⁶⁾ Buchwald, S. L.; LaMaire, S. J.; Nielsen, R. B.; Watson, B. T.; King, S. M. *Tetrahedron Lett.* **1987**, 28, 3895.

⁽⁷⁾ Lipshutz, B. H.; Keil, R.; Ellsworth, E. L. *Tetrahedron Lett.* **1990**, *31*, 7257.

⁽⁸⁾ Swanson, D. R.; Nguyen, T.; Noda, Y.; Negishi, E. J. Org. Chem. 1991, 56, 2590.

⁽⁹⁾ Makabe, H.; Negishi, E. Eur. J. Org. Chem. 1999, 969.

An obvious combination of ${}^{7}Bu_{2}AlH$ and $ZrCp_{2}Cl_{2}$ was briefly investigated by us in 1980 with the goal of catalyzing hydroalumination of alkenes with $ZrCp_{2}Cl_{2}$ (eq 1 in Scheme 1). This attempt failed, but the corresponding reaction of

¹Bu₃Al with alkenes in the presence of a catalytic amount of $ZrCp_2Cl_2$ led to a hydrogen-transfer hydroalumination of alkenes¹⁰ (eq 2 in Scheme 1). A year earlier, Schwartz reported an intriguing but complex 1:3 reaction of $ZrCp_2Cl_2$ with ¹Bu₂AlH in benzene shown in eq 3 in Scheme 1.¹¹ We confirmed the reported results. Furthermore, we have found that the 1:3 stoichiometry is independent of the initial ratio of $ZrCp_2Cl_2$ and ¹Bu₂AlH. Thus, the reaction fails to give HZrCp₂Cl.

Despite the uninspiring results shown in Scheme 1, the reaction of ZrCp₂Cl₂ with ⁱBu₂AlH was reexamined in THF. Thus, ⁱBu₂AlH was slowly added to 1 molar equiv of ZrCp₂Cl₂ dissolved in THF at 0 °C, and the reaction was monitored by NMR spectroscopy. It induced precipitation of HZrCp₂Cl, which was accompanied by complete disappearance of the Cp signals for ZrCp₂Cl₂ [¹H NMR: δ 6.25 (s); ¹³C NMR: δ 116.60 (s)]. These findings indicated clean formation of a 1:1 mixture of HZrCp₂Cl and ⁱBu₂AlCl·THF (Reagent I) according to eq 1 in Scheme 2. In marked

contrast with other known procedures for the preparation of HZrCp₂Cl by treating ZrCp₂Cl₂ with LiAlH₄, Red-Al, or other basic metal hydrides, the ^{*i*}Bu₂AlH–ZrCp₂Cl₂ reaction was not seriously plagued with over-reduction of ZrCp₂Cl₂ to produce H₂ZrCp₂¹² or very sluggish and tedious filtration of the byproducts. The latter feature permits convenient and facile removal of ^{*i*}Bu₂AlCl·THF by washing it through a sintered glass filter leading to in situ generation and direct use of HZrCp₂Cl (Reagent II) without its transfer, reweighing, or, more dangerously, long-term storage. It goes without saying that this reaction also provides an unprecedentedly clean and convenient route to isolated and pure HZrCp₂Cl (Reagent III) that can be stored and used (Scheme 2).

As the results summarized in Table 1 indicate, Reagent I is a convenient reagent for hydrometalation of both terminal (entries 1–10) and internal (entries 11 and 12) alkynes as well as alkenes (entries 13 and 14). One unexpected but synthetically useful finding is that the hydrometalation—iodinolysis of 2-alkynes run at ≤ 25 °C (entries 11 and 12) is highly regioselective ($\geq 98\%$) as long as 1.5 equiv of Reagent I is used.¹³ This reagent is also convenient and satisfactory for a recently reported direct reduction of amides to aldehydes⁴ at 23 °C (eq 3 in Scheme 3). Despite many favorable results shown in Table 1 and Scheme 3, Reagent I is clearly not a genuine equivalent to HZrCp₂Cl. In some cases, the presence of ^{*i*}Bu₂AlCl can be detrimental, as indicated by three mutually related cases of the hydrozir-conation–Pd-catalyzed cross-coupling tandem reactions (eqs

fable 1.	Hydrometalation-	-Iodinolysis of	Alkynes and	Alkenes	with ZrCp ₂ Cl ₂ -	DIBAL-H in	THF (R	eagent I)
----------	------------------	-----------------	-------------	---------	--	------------	--------	-----------

R—	━−H(Me)	ⁱ Bu ₂ AIH, rt, T	ZrCp ₂ Cl ₂ HF	$\begin{bmatrix} R & H(Me) \\ H & ML_n \end{bmatrix}$ M = Zr and Al	$\xrightarrow{l_2}$ $\stackrel{R}{\longrightarrow}$ $\stackrel{R}{\rightarrow}$	H(Me) < I	
entry	R	H or Me	isolated yield of iodide ^a (%)	entry	R	H or Me	isolated yield of iodide ^a (%)
1	ⁿ Hex	Н	91 ^b	8	(E)- ⁿ HexCH=CH	н	95
2	HOCH ₂	Н	83	9	(E)-TBSOCH ₂ CH=CH	н	79
3	HO(CH ₂) ₂	Н	85	10	(E)TBSO	н	87
4	TBSOCH ₂	Н	92	11	TBSOCH ₂	Me	82
5	TBSOCH(ⁿ Pr)	Н	93	12	TBSO(CH ₂) ₂	Me	74
6	TBSOCH ₂ CHMe	н	90	13	ⁿ HexCH=0	CH_2	87 ^c
7	PhMe ₂ Si	Н	81	14	PhCH=0	CH ₂	89 ^c

^{*a*} All isolated products were isomerically \geq 98% pure by ¹H and ¹³C NMR spectroscopy. ^{*b*} The use of ⁱBu₂AlD gave the β -deuterio derivative in 90% yield with \geq 98% D incorporation in the β position. ^{*c*} The alkene indicated was hydrometalated, and the corresponding iodoalkanes were the products obtained in the indicated yields.

4-6 in Scheme 3). In eq 4, Reagent I is highly satisfactory. In eq 5, however, an undesired participation by ${}^{i}Bu_{2}AlCl$ seriously diverts the course of the reaction. This side reaction is currently under investigation.

Another somewhat unexpected aspect of the hydrozirconation with Reagent I is that the desired hydrozirconation is accompanied by a slow reverse transmetalation in which the alkenyl group generated by hydrozirconation is transferred from Zr to Al to eventually give an equilibrium mixture. The reversible nature of the slow transmetalation can be readily observed, as exemplified in Scheme 4.

As amply demonstrated in Scheme 5 summarizing the results of highly demanding cases of oligoenyne syntheses,

Reagent II does appear to serve as a genuine and satisfactory equivalent to isolated and pure HZrCp₂Cl. Even so, fast addition or use of an excess ${}^{i}Bu_{2}AlH$ must be avoided so as not to generate H₂ZrCp₂.

The following experiments involving the use of Reagents I and II are representative.

(1E,3S)-4-(tert-Butyldimethylsiloxy)-1-iodo-3-methyl-1butene (use of Reagent I): To ZrCp₂Cl₂ (321 mg, 1.1 mmol) in THF (2.5 mL) cooled to 0 °C was added slowly a solution of ⁱBu₂AlH (156 mg, 1.1 mmol) in THF (0.5 mL) under argon. The resultant suspension was stirred for 30 min at 0 °C, followed by addition of a solution of (3S)-4-(tertbutyldimethylsiloxy)-3-methyl-1-butyne (198 mg, 1.0 mmol) in THF (0.5 mL). The mixture was warmed to room temperature and stirred until a homogeneous solution resulted (ca. 1 h) and then cooled to -78 °C, followed by addition of I_2 (330 mg, 1.3 mmol) in THF (1.5 mL). After 30 min at -78 °C, GLC analysis indicated that the starting material had been completely consumed, and the desired product was formed in 94% yield by GLC. The reaction mixture was quenched with 1 N HCl, extracted with ether, washed successively with saturated Na₂S₂O₃, NaHCO₃, and brine, dried over MgSO₄, filtered, and concentrated. Flash chromatography (silica gel, hexanes) afforded 293 mg (90%) of the title compound.14

(3E,5E,7E)-1-(tert-Butyldimethylsilyl)-3,5,7-decatrien-1,9-diyne (5b) (use of Reagent II): To ZrCp₂Cl₂ (321 mg, 1.1 mmol) in THF (2.5 mL) in a two-necked flask was added dropwise a solution of ⁱBu₂AlH (156 mg, 1.1 mmol) in THF (0.5 mL) at 0 °C. The resultant suspension was stirred for 30 min at 0 °C. The supernatant liquid was filtered through a sintered glass filter attached to the flask under argon. The white solid (HZrCp₂Cl) remaining in the reactor was washed with THF (2.0 mL). To HZrCp₂Cl thus prepared was added a solution of 3b (190 mg, 1.0 mmol) in THF (1.0 mL) at room temperature. After 1 h, a homogeneous solution thus obtained was cooled to 0 °C, and a solution of dry ZnBr₂ (261 mg, 1.0 mmol) in THF (1.0 mL) was added. After 30 min, (E)-BrCH=CHC=CSiMe₃ (242 mg, 1.2 mmol) and Pd(PPh₃)₄ (23 mg, 0.02 mmol) in DMF (2.0 mL) were added, and the resultant mixture was stirred at room temperature and monitored by GLC analysis. The reaction was complete in 5 h, and the reaction mixture was quenched with aqueous NH₄Cl, extracted with ether, washed successively with saturated NaHCO₃ and brine, dried over MgSO₄, filtered, and concentrated to give the crude product as a viscous oil. To the crude product were added MeOH (4.0 mL) and K_2CO_3 (138 mg, 1.0 mmol). The resultant mixture was stirred at room temperature for 1 h, quenched with water, extracted with ether, dried over MgSO₄, filtered, and concentrated. Flash chromatography (silica gel,

⁽¹⁰⁾ Negishi, E.; Yoshida, T. Tetrahedron Lett. 1980, 1501.

⁽¹¹⁾ Carr, D. B.; Schwartz, J. J. Am. Chem. Soc. 1979, 101, 3521.

⁽¹²⁾ For an alternate approach to prepare a hydridoziconocene chloride derivative, i.e., HZr(MeCp)₂Cl, by mixing Zr(MeCp)₂Cl₂ with H₂Zr-(MeCp)₂, see: Erker, G.; Schlund, R.; Krüger, C. *Organometallics* **1989**, 8, 2349.

⁽¹³⁾ For the use of 2.0 equiv of HZrCp₂Cl, see: Panek, J. S.; Hu, T. J. Org. Chem. **1997**, 62, 4912.

⁽¹⁴⁾ Zeng, F.; Negishi, E. Org. Lett. 2002, 4, 703.

^{*a*} Reagents and conditions: (a) (i) dry ZnBr₂, (ii) 2% Pd(PPh₃)₄, THF-DMF. (b) Same as (a) except that 2 equiv each of **5b** and HZrCp₂Cl were used and that the cross-coupling reaction was carried out at 50 °C.

hexanes) afforded the title compound (**5b**) (186 mg, 77% over 2 steps).

Acknowledgment. We thank the National Science Foundation (CHE-0309613), the National Institutes of Health (GM 36792), and Purdue University for support of this work. Technical assistances provided by B. Liang, A. Mitin, and G. Zhu are gratefully acknowledged. **Supporting Information Available:** Experimental procedures and ¹H and ¹³C NMR spectroscopic data for 9 terminally silylated oligoenynes including **4b**, **5b**, **8**, and **9**, iodoalkenes, and 3-pyridinecarboxaldehyde- α - d_1 . This material is available free of charge via the Internet at http://pubs.acs.org.

OL061202O